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We consider biased diffusion in a one-dimensional lattice and compare results obtained
with fixed time step and kinetic Monte Carlo methods. Spurious dispersion and particle
position correlation appear with the fixed time step Monte Carlo approach. The mentioned
correlation increases with time. We demonstrate that the correct results, that correspond
to a time step that tends to zero, are obtained using the kinetic Monte Carlo method. The
conclusions also apply to biased diffusion in two or more dimensions and to random
deposition.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

A crystalline surface, over which adsorbed particles diffuse, is usually modeled by a periodic potential as shown in
Fig. 1(a). A particle in a potential well can jump to the neighboring wells. The transition rate is given by m exp½�E=ðkB TÞ�,
where m is a rate constant (usually of the order of 1012 s�1 [1]), E is the energy barrier, and T is temperature. If the particle
is charged and an electric field is applied, the potential is modified as in Fig. 1(b). The transition rate is now bigger to the right
than to the left. The difference between the two transition rates can be controlled with the temperature and the electric field
intensity. The problem of biased diffusion, in different substrata, is analyzed in, for example, [2–6].

The numerical simulation of this simple physical system with a fixed time step Monte Carlo (MC) method introduces dis-
tortions and correlations that are not present in the kinetic MC method (for a review of the methods, see [7,8]). We will con-
sider a system of N non-interacting particles with asymmetric or biased diffusion. We will obtain, analytically and
numerically, the moments of position up to order 4 and the correlation between the positions of two particles for fixed time
step and kinetic MC. The results will be compared with the ideal result that is obtained when the time step is infinitesimally
small ðDt ! 0Þ. Some simple examples where the mentioned distortions are relevant will be discussed.
. All rights reserved.
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Fig. 1. (a) Adsorbed particle in a surface potential with energy barrier E. (b) Same potential for a charged particle with an applied electric field.
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2. The methods

We consider a one-dimensional lattice with N non-interacting particles that can jump to the right or to the left with tran-
sition probabilities per unit time P and Q, respectively. In one MC step there are 2N possible processes, and one of these pro-
cesses is chosen with the corresponding probability.

The difference between the fixed time step MC and kinetic MC methods is how time is increased after each step. For fixed
time step MC, a small enough time step Dt is chosen so that the sum of the probabilities of all processes remains smaller or
equal to 1, i.e. NðP þ QÞDt 6 1. In each MC step, the probability that a particle jumps to the right or to the left is p ¼ PDt or
q ¼ QDt, respectively; one of the 2N possible processes is chosen according to these probabilities and time is increased by Dt.
Note that the probabilities p and q correspond to processes that can be split in two parts: one particle is chosen with uniform
probability 1=N and this particle jumps to the left or to the right with probabilities Np and Nq.

In the kinetic MC method, the time increment is a stochastic variable that represents a Poisson process, with an exponen-
tial distribution that is given by R expð�RDtÞ, where R ¼ NðP þ QÞ is the sum of the transition rates of all processes. To
numerically accomplish this distribution, in each step the time increment is calculated with Dt ¼ � lnðuÞ=R, where u is a ran-
dom number with a uniform distribution in the interval ð0;1� [9]. In each MC step, the probability that one particle jumps to
the right or to the left is p ¼ P=R or q ¼ Q=R, respectively. The sum of the probabilities of all processes is equal to one, so that
in each MC step one possible process is always performed.

In both cases, the size of the jump (to the right or to the left) is Dx.

3. Continuous time random walk

The one-dimensional system with N non-interacting particles can be visualized as one particle that performs a random
walk in an N-dimensional system. For this system, the Continuous Time Random Walk (CTRW) method [10,11] can be ap-
plied to obtain the Laplace and Fourier transform of the probability density nðx; tÞ, that gives the probability to find the par-
ticle in position x ¼ ðx1; x2; . . . ; xNÞ at time t. The method is a generalization of the random walk, in which time appears as a
continuous variable. It can be applied to both, fixed time step MC and kinetic MC.

The complete solution of the CTRW problem is given by the Montroll–Weiss equation [12] for the characteristic function,
i.e. the Fourier and Laplace transform of nðx; tÞ:
~̂nðk; sÞ ¼ 1� ŵðsÞ
s

1

1� ŵðsÞ~f ðkÞ
; ð1Þ
where ŵðsÞ is the Laplace transform of the waiting time distribution wðtÞ (the probability density of a time increment of dura-
tion t between two successive steps); and ~f ðkÞ, called the structure function of the random walk, is the Fourier transform of
f ðxÞ, the probability density of a jump of size x.

The main difference between fixed time step and kinetic MC appears in the waiting time distribution. For fixed time step
MC, this distribution is a Dirac delta,
wFðtÞ ¼ dðt � DtÞ; ŵFðsÞ ¼ e�s Dt ; ð2Þ
while for kinetic MC, the distribution is exponential:
wKðtÞ ¼ R expð�RtÞ; ŵKðsÞ ¼ R=ðsþ RÞ: ð3Þ
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We use subindices F and K to refer to fixed time step or kinetic MC, respectively.
It is convenient to define a density of transition rates of jumps of size x as gðxÞ ¼

PM
i¼1Pidðx� DxiÞ, where Pi are the tran-

sition rates of the M possible processes and Dxi are the corresponding jump sizes. (We are considering a finite number of
processes and a discrete density gðxÞ.) The density gðxÞ is not normalized and its integral is equal to the sum of transition
rates R ¼

PM
i¼1Pi. The way in which gðxÞ is normalized to obtain the probability density f ðxÞ is different for fixed time step

or kinetic MC. For fixed time step MC, the time step Dt must be small enough such that RDt 6 1, and we have
fFðxÞ ¼ gðxÞDt þ ð1� RDtÞdðxÞ; ð4Þ
where the last term represents the case in which non of the M possible processes is performed. On the other hand, in one step
of the kinetic MC method, one of the M possible processes is always performed and the normalization is
fKðxÞ ¼ gðxÞ=R: ð5Þ
Eqs. (4) and (5) coincide when the time step takes its maximum possible value: Dt ¼ 1=R. In particular, for our case of N
particles with biased diffusion, we have
gðxÞ ¼
XN

i¼1

½Pdðxi � DxÞ þ Qdðxi þ DxÞ�
Y
j – i

dðxjÞ;

~gðkÞ ¼
XN

i¼1

½Pe�ikiDx þ QeikiDx�:
ð6Þ
Introducing Eqs. (2) and (4) for fixed time step MC, or Eqs. (3) and (5) for kinetic MC, in Eq. (1), we obtain:
~̂nFðk; sÞ ¼
1

sþ ½R� ~gðkÞ� sDt
expðsDtÞ�1

; ð7Þ

~̂nKðk; sÞ ¼
1

sþ R� ~gðkÞ : ð8Þ
It is assumed that the fixed time step MC exactly reproduces the behavior of the physical system only in the limit Dt ! 0.
By comparison of Eqs. (7) and (8) we can demonstrate that this limit corresponds to the kinetic MC:
lim
Dt!0

~̂nFðk; sÞ ¼ ~̂nKðk; sÞ: ð9Þ
Therefore, for this system of non-interacting particles, the kinetic MC method generates the exact characteristic function.
All moments and correlations can be obtained by differentiation of the characteristic function,
hx1x2 � � � xmi ¼ im @m~nðk; tÞ
@k1@k2 � � � @km

����
k¼0

: ð10Þ
(The sign of the imaginary number i in (10) depends on the convention of signs of the Fourier transform; we are using a
minus sign in the exponential of the forward transform, but others use the opposite convention as, for example, [10].)

Another method to obtain the moments and correlations is presented in Appendix A. This method has the advantage that
does not use Laplace transform (the inverse Laplace transform of ~̂nFðk; sÞ is not straightforward to obtain).

For simplicity, we will consider that the jump step is Dx ¼ 1.

4. Moments

The mean value of position of one of the N particles (that starts from position x ¼ 0 for t ¼ 0) is the same for both meth-
ods: hxiF ¼ hxiK ¼ �x ¼ ðP � QÞ t. But, for other moments, the fixed time step MC method introduces errors proportional to Dt.
The centered moments, for fixed time step or kinetic MC, are
DxmjF;K ¼ hðx� �xÞmiF;K : ð11Þ
For order 2 we have
Dx2jK ¼ r2 ¼ ðP þ QÞt;
Dx2jF ¼ ðP þ QÞt � ðP � QÞ2tDt;

ð12Þ
where r is the dispersion of the exact result given by the kinetic MC method. The difference between both moments in-
creases linearly with time, but the moment magnitude also increases with time. It is convenient to define a normalized dif-
ference between moments as follows:
Dm ¼
DxmjF � DxmjK

rm
: ð13Þ
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This definition is equivalent to a scaling of the space coordinate so that the probability distribution of particles has a con-
stant width. We get, for the moment difference up to order 4,
Fig. 2.
We hav
symbol
Dt ! 0;
D2 ¼ �
ðP � QÞ2

P þ Q
Dt; ð14Þ

D3 ¼
2ðP � QÞ3Dt � 3ðP2 � Q 2Þ

ðP þ QÞ3=2 ffiffi
t
p Dt; ð15Þ

D4 ¼ f3ðt � 2DtÞ½ðP � QÞ4Dt � 2ðP � QÞ2ðP þ QÞ� þ 2PQ � 7Q 2 � 7P2g½ðP þ QÞ2t��1Dt: ð16Þ
In the limit t !1, the difference between odd moments tends to 0, since the same moments tend to 0 because the prob-
ability distributions tend to a symmetric Gaussian. But the widths of the Gaussians are different, and a difference between
even moments remain even for t !1. For the difference of order 4 moments we have limt!1D4 ¼
3½ðP � QÞ4Dt � 2ðP � QÞ2ðP þ QÞ�ðP þ QÞ�2 Dt.

Fig. 2 shows D2;D3 and D4 against time for diffusion of one particle with P ¼ 3=8;Q ¼ 1=8 and Dt ¼ 1, for fixed time step
and kinetic MC methods. In MC simulations of diffusion processes, a time interval equal to 1=ðP þ QÞ is usually considered as
the time needed for all particles to have, on average, one chance to jump. In experiments, this time varies in a broad range
that depends on the values of the temperature and the energy barrier. If N particles are present in the system, the time incre-
ment after one MC step (in which only one particle can jump) is taken as Dt ¼ 1=½NðP þ QÞ�, so that for a time increment
equal to 1=ðP þ QÞ all particles had a chance to jump. This choice is arbitrary in the sense that even for only one particle
we can chose Dt ¼ 1=½NðP þ QÞ�with N large, but the simulation would be quite inefficient since during most of the comput-
ing time the particle would stay at its site. In our simulations, we considered diffusion of only one particle with Dt large in
order to magnify the distortions introduced by the fixed time step MC, but for N particles the same distortions are still pres-
ent, the only difference is that the vertical axis of Fig. 2 must be approximately scaled by a factor 1=N.

In the case of non-biased or symmetric diffusion, P ¼ Q , the fixed time step MC performs better than for biased diffusion,
since Ds

2 ¼ Ds
3 ¼ 0. There is a difference between moments of order 4: Ds

4 ¼ �3Dt=t, but it tends to 0 for t !1.
The errors introduced in the moments by the fixed time step MC can be corrected with a change of the transition rates.

We define the transition rates P0 and Q 0 such that, using fixed time step MC, they reproduce the first two moments that are
obtained with kinetic MC with transition rates P and Q, i.e.:
ðP � QÞ t ¼ ðP0 � Q 0Þt; ð17Þ
ðP þ QÞ t ¼ ðP0 þ Q 0Þ t � ðP0 � Q 0Þ2tDt: ð18Þ
Solving Eqs. (17) and (18) we get
P0 ¼ P þ ðP � QÞ2Dt=2;

Q 0 ¼ Q þ ðP � QÞ2Dt=2:
ð19Þ
With this modification of the transition rates for fixed time step MC, we have D02 ¼ 0 and obtain
Numerical results of D2ð�Þ;D3ð�Þ and D4ðMÞ against time for P ¼ 3=8;Q ¼ 1=8 and N ¼ 1. The curves represent the analytical results of Eqs. (14)–(16).
e chosen a time scale such that Dt ¼ 1; p ¼ P and q ¼ Q for fixed time step MC. Number of samples: 107. The numerical results represented by
s �;� and , around zero, correspond to D2;D3 and D4 with the fixed time step moments replaced by the analytical result obtained for the limit

this is a confirmation of the correct behaviour of the kinetic MC results.



Fig. 3. D02ð�Þ;D
0
3ð�Þ and D04ðMÞ against time for P ¼ 3=8;Q ¼ 1=8;N ¼ 1 and Dt ¼ 1, that correspond to the modified transition rates P0 ¼ 13=32 and

Q 0 ¼ 5=32. Dots are numerical results and the curves correspond to Eqs. (20) and (21). Number of samples: 107.

Fig. 4.
P ¼ 3=8
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D03 ¼ �
3ðP2 � Q 2Þ þ ðP � QÞ3Dt

ðP þ QÞ3=2 ffiffi
t
p Dt; ð20Þ

D04 ¼ 3
ðP � QÞ4 Dt2 þ 2ðP � QÞ2ðP þ QÞDt � 2ðP2 þ Q 2Þ

ðP þ QÞ2t
Dt: ð21Þ
As expected for all odd moments, D03 tends to 0 when t !1. The main difference with respect to Eqs. (15) and (16) is that
now D04 tends to 0 when t !1. Therefore, for t large, the first four moments approach the correct value using fixed time step
MC with transition rates modified according to (19), and it is expected that the same happens for higher order moments
since the probability distribution tends to a Gaussian that is completely determined by its mean value and dispersion.
Fig. 3 shows numerical and analytical results for D02;D

0
3 and D04 with the modified transition rates.

Let us stress that there is another problem that the modification of the transition rates can not avoid: the correlations.

5. Correlations

The correlation between fluctuations of position around the mean value of two particles is CK;F ¼ hðx1 � �x1Þðx2 � �x2ÞiK;F .
The analytical results for kinetic and fixed time step MC are
CK ¼ 0;

CF ¼ �ðP � QÞ2tDt:
ð22Þ
Correlation between position of two particles for fixed time step MC (circles) and for kinetic MC (crosses) against time (numerical and analytical) for
y Q ¼ 1=8;N ¼ 20 and Dt ¼ 1=20. Number of samples: 105.
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The fixed time step MC method again introduces a distortion, now in the form of a spurious correlation. As happened with
the second order moment, the distortion is proportional to Dt and is different from zero for biased diffusion, i.e. P – Q .

The correlation increases with time, therefore, even for small values of Dt, for a long enough time there will be a large
value of the correlation.

Fig. 4 shows numerical and analytical results of CF and CK against time for a one-dimensional system with 20 particles.
Note that the modified transition rates, P0 and Q 0, introduced in the previous section, do not change the value of the cor-

relation CF , since it depends on the difference P � Q and, according to Eq. (17), this difference does not change.
Let us now present an illustrative example where the correlations in the fixed time step MC method appear in a very sim-

ple way. We consider a system of N ¼ 2 particles, particle 1 and particle 2, with P > 0 and Q ¼ 0. The particles start at t ¼ 0
from position x1 ¼ x2 ¼ 0. In the fixed time step MC simulation, we chose Dt such that p1 ¼ p2 ¼ PDt ¼ 1=2ðq1 ¼ q2 ¼ 0Þ.
Then, at each MC step, always one particle jumps to the right. After n ¼ 2kðk ¼ 1;2;3; . . .Þ MC steps, the average position
of both particles is �x1 ¼ �x2 ¼ k, and t ¼ 2kDt. Let us now consider only one sample composed by these two particles. Let
m1ðm2Þ be the number of jumps performed by particle 1 (particle 2). Then, we have m1 þm2 ¼ n; x1 ¼ m1 and x2 ¼ m2, at
time t. There are three possibilities: (a) m1 > k and m2 < k, (b) m1 < k and m2 > k, and (c) m1 ¼ m2 ¼ k. For the first two
cases, C12 ¼ ðx1 � �x1Þðx2 � �x2Þ is negative. Only for case (c) we have C12 ¼ 0. The correlation CF is the mean value of C12, then
obviously CF < 0. The same result can be obtained after n ¼ 2kþ 1ðk ¼ 0;1;2 . . .Þ MC steps.

6. Examples

In this section, we present some simple models of physical systems where the choice of the fixed time step MC method
introduces errors that are not present in the kinetic MC method.

The most simple example is Brownian motion in one dimension with a drift velocity vd. The drift velocity is correctly ob-
tained by fixed time step or kinetic MC, and its value is vd ¼ ðP � QÞ (we are using Dx ¼ 1). The diffusion coefficient is related
to the second order moment by Dx2jF;K ¼ 2DF;K t. According to Eq. (12), there is a difference between the diffusion coefficients
obtained with both MC methods: DF � DK ¼ �ðP � QÞ2 Dt=2. Fig. 5 shows the one particle probability density against position
for time t ¼ 500ðDt ¼ 1; P ¼ 0:9;Q ¼ 0:1Þ for kinetic and fixed time step MC. The difference between the widths of the Gauss-
ian curves is directly related to the error introduced in the diffusion coefficient by the fixed time step MC method.

For one particle in a two dimensional system, the spurious correlations of the fixed time step MC also produces distor-
tions in the particle probability density. Fig. 6 shows the particle density in grey scale for a sequence of times and for fixed
time step MC. The x and y components of the movement have the same transition rates ðPx ¼ Py ¼ 0:7;Q x ¼ Q y ¼ 0:05Þ so, in
average, the particle moves along the diagonal y ¼ x. Due to the negative correlation between fluctuations of coordinates x
and y [see Eq. (22)], the particle density is elongated along a direction perpendicular to the diagonal. This distortion disap-
pears when the kinetic MC method is used, as shown in Fig. 7.

Another example is a model of surface growth known as random deposition [13]. The model consists in a discrete one-
dimensional lattice in which, at each step of the dynamics, one site is randomly chosen and one particle falls over it. Each
time a particle falls over a site, its height hði; tÞ is increased by one. The original definition of the model considers that, after
each step, time is increased by a fixed time increment Dt ¼ 1=L, where L is the number of sites. The model is equivalent to
biased diffusion with P ¼ 1 and Q ¼ 0. The width of the interface w2 is given by the centered second order moment,
w2 ¼ t ð1� 1=LÞ. The result shows a dependence of the width of the interface on the size of the system, that has no physical
Fig. 5. Particle probability density nðx; tÞ against position x, for P ¼ 0:9;Q ¼ 0:1;N ¼ 1;Dt ¼ 1 and for time t ¼ 500. The points correspond to the numerical
results (�: fixed time step MC, þ: kinetic Monte Carlo), and the curves are Gaussian functions with mean value ðP � QÞ t and dispersions given by Eqs. (12).
Number of samples:106.



Fig. 6. Probability density of one particle in a two dimensional system for fixed time step MC. The sequence, from left-bottom to right-top, correspond to
times t ¼ 150;300;450 and 600. The transition rates of the movement in the x and y coordinates are Px ¼ Py ¼ 0:7 and Qx ¼ Qy ¼ 0:05. The density appears
elongated along the direction perpendicular to the diagonal y ¼ x. Dt ¼ 1=2 and the number of samples: 106. (White = 0, black = 0.0022).

Fig. 7. Probability density of a particle in a two dimensional system for kinetic MC. The distortions of the fixed time stem MC method are not present now.
Parameters as in Fig. 6. (White = 0, black = 0.0014).
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meaning. On the other hand, the definition of the model is intended to produce an uncorrelated interface, since each site be-
haves independently of the rest of the system. But this is not the case, since a negative correlation, given by CF ¼ �t=L, ap-
pears between the heights of the columns in any pair of sites. Again, all these distortions disappear using the stochastic time
step of the kinetic MC method.
7. Conclusions

We analyzed biased diffusion of N non-interacting particles in a one dimensional lattice simulated using the methods of
fixed time step MC and kinetic MC. The fixed time step MC method introduces distortions, in the values of moments and
correlations, that, in the limit of small time step Dt, are proportional to Dt. Let us note that all terms proportional to Dt in
the moments or correlations represent an artifact of the method, since Dt is an arbitrary parameter that has no counterpart
in the physical system that is modeled, and the correct result is only obtained in the ideal limit Dt ! 0.
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We have demonstrated, using the Montroll–Weiss equation for Continuous Time Random Walk, that the evolution of the
particle probability density, nðx; tÞ, with kinetic MC is equivalent to the evolution with fixed time step MC in the limit Dt ! 0.
This means that kinetic MC reproduces the correct dynamics that for fixed time step MC would require an infinite compu-
tational time.

The errors that the fixed time step MC (with finite Dt) introduces in moments can be eliminated, in the limit t !1, with a
simple modification of the transition rates. The new transition rates, P0 and Q 0, are defined so that they produce the same
(undistorted) mean value and the correct second order moment. Since for t !1 the particle density tends to a Gaussian
completely determined by its mean value and dispersion, the errors in higher order moments vanish for large times.

Nevertheless, distortions in correlations can not be avoided with the modified transition rates. Since we are considering
non-interacting particles, correlations should be zero, but the fixed time step MC introduces a spurious non zero correlation
between fluctuations of position of two particles. Correlations calculated with kinetic MC are zero.

It has to be noted that, in most of the previous works on biased diffusion simulated with fixed time step MC, the errors of
the method are absorbed by the statistical error since a small value of Dt and a large number of particles are, in general, used.

In conclusion, simulation of biased diffusion with fixed time step MC introduces distortions in moments and correlations
that can produce errors in, for example, the calculation of diffusion coefficients or particle density profiles. The distortions
are not present in the kinetic MC method with stochastic time step.
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Appendix A

In this appendix, we present an alternative method for the calculation of correlations and moments of N non-interacting
particles with biased diffusion in a one-dimensional lattice.

The vector x ¼ ðx1; . . . ; xNÞ represents the position of the N particles. At t ¼ 0 we have x ¼ 0, so, the initial probability den-
sity is nðx; 0Þ ¼ dðxÞ. We define the auxiliary function FF;Kðz; tÞ as follows:
FF;Kðz; tÞ ¼
Z

dxnF;Kðx; tÞzx1
1 zx2

2 � � � z
xN
N ; ð23Þ
where, as before, subindices F and K stand for fixed time step or kinetic MC. It can be shown that all moments and correla-
tions can be obtained via the equation
hxj1
1 xj2

2 � � � x
jN
N iF;K ¼

YN

i¼1

zi
@

@zi

� �ji

FF;Kðz; tÞ
�����

z¼ð1;...;1Þ

: ð24Þ
We consider first the case of fixed time step MC. In order to obtain an expression for FFðz; tÞ, we use the Master equation
for nFðx; tÞ (for simplicity, we will omit subindex F in n) considering fixed time increments of size Dt:
nðx; t þ DtÞ ¼ ð1� RDtÞnðx; tÞ þ PDt
XN

i¼1

nðx1; . . . xi � Dx; . . . xN ; tÞ þ QDt
XN

i¼1

nðx1; . . . xi þ Dx; . . . xN; tÞ: ð25Þ
Introducing Eq. (25) in Eq. (23), we obtain
FFðz; t þ DtÞ ¼ ð1� RDtÞ
Z

dxnðx; tÞzx1
1 � � � z

xN
N þ P Dt

XN

i¼1

Z
dxnðx; tÞzx1

1 � � � z
xiþDx
i � � � zxN

N

þ Q Dt
XN

i¼1

Z
dxnðx; tÞzx1

1 � � � z
xi�Dx
i � � � zxN

N ; ð26Þ
where a change of the integration variable was performed in the last two terms. The following recursion formula is obtained:
FFðz; t þ DtÞ ¼ 1� RDt þ P Dt
XN

i¼1

zDx
i þ Q Dt

XN

i¼1

z�Dx
i

 !
Fðz; tÞ: ð27Þ
This formula and the initial condition FFðz;0Þ ¼ 1, allow us to obtain the following expression for FF:
FFðz; tÞ ¼ 1� RDt þ PDt
XN

i¼1

zi þ QDt
XN

i¼1

z�1
i

 !t=Dt

; ð28Þ
where t=Dt is the number of fixed size time steps and, for simplicity, we have used Dx ¼ 1.
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The auxiliary function for kinetic MC can be obtained knowing that it is equivalent to fixed time step MC in the limit
Dt ! 0, as was demonstrated in Eq. (9). In this limit, we get
FKðz; tÞ ¼ exp �Rþ P
XN

i¼1

zi þ Q
XN

i¼1

z�1
i

 !
t

" #
: ð29Þ
Using the auxiliary functions of Eqs. (28) and (29), we can obtain all the analytical results of moments and correlations
shown in the previous pages.
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